Placed on – 5 May 2022

Capture, use and store carbon effectively with IoT to mitigate climate change

CCUS

Several carbon-intensive industries are working towards more environmentally friendly processes and techniques to mitigate their environmental footprint. Adding to zero-carbon technologies other efforts have been put in place to address the United Nations’ urgent call to step up carbon capture, use and storage (CCUS) to stay within emission targets as a pathway to carbon neutrality.  

According to the United Nations, CCUS technologies play a critical role in reaching the climate goals of the Paris Agreement, as carbon reduction methodologies are not sufficient yet to achieve our targets in the short and medium term. In that sense, CCUS is considered essential to unlock the full potential of decarbonization, as the technology can capture over 90% of the CO2 when used at the emission source.  

But what is carbon capture, use and storage? 

Carbon capturing systems are technologies that catch and keep CO2 from industrial processes or fuel combustion before it reaches the atmosphere, to then be transported to either:

1) be used directly as a resource; or,

2) to be stored underground in geological formations. 

When stored underground, CO2 is injected through porous layers beneath impermeable rocks. These rocks are “very likely to retain 99% of the CO2 for more than 100 years when the site is appropriately selected and managed”, according to the International Panel on Climate Change (IPCC).  

When used directly as a resource, CO2 can be utilized to create products with economic value. Utilization is usually subdivided into 3 principal areas: Mineralization (e.g., carbonates), Chemical (e.g., fire extinguishers), and Biological (e.g., to promote plant growth and increase soil quality).  

As expressed by the IPCC, the prerequisite for effective carbon capture, use and storage is “appropriate management,” since potential leakage of CO2 is always of concern. When injected in geological formations, CO2 could start to dissolve the rock seal increasing the acidity of groundwater. When sequestered in soils and above ground vegetation, it could leak back into the atmosphere through land-use or climate changes. Thus, defeating the purpose of the carbon sequestration efforts and hindering the possibility to achieve carbon neutrality targets in the short and medium term.  

Addressing the concerns with IoT 

To avoid the above-mentioned concerns and risks, constant measuring and monitoring is necessary. And here is where the Internet of Things (IoT) comes in. IoT is effective in solving the problem of real-time data collection, which otherwise would be complex, expensive, and time-consuming. Thus, allowing us to assess the performance of CCUS systems, and to continuously monitor environmental conditions and impacts.  

Using IoT technologies alongside CCUS systems makes the latter more effective. It facilitates the proper management of the systems by giving decision-makers predictive and preventive capabilities. IoT also allows managers to make more informed decisions and to be more confident about the data and environmental disclosure. 

The value and necessity of using IoT solutions together with CCUS systems will only increase over time, as discussions about carbon capture, use and storage are becoming more frequent and relevant. Authorities, such as the European Commission, have started to investigate the creation of carbon removal certification systems, thus making monitoring and reporting key.  

Industries looking to apply CCUS systems will soon be faced with the fundamental step of improving monitoring, reporting and verification to get recognition from the authorities and hence certified. In that sense, adding IoT to their CCUS system would help companies to collect highly credible real-time data, and to undertake accurate evaluation of carbon capture and environmental impact. IoT can make the said data and information available to top management, government authorities or third-party users as needed.  

Evalan’s IoT solution BACE in action 

Recent innovations have allowed for mobile carbon capture and storage units that possess the potential to significantly reduce the emissions associated with freight transport (e.g., trucks, airplanes, and ships). One such example, using Evalan’s IoT connector: BACE to enhance its effectiveness, is Value Maritime.  

Value Maritime developed and patented a CO2 capture and storage module for seagoing vessels. The captured CO2 is then used in other industries, including greenhouses to help the growth of flowers and crops. To expand its effectiveness, Value Maritime chose Evalan as their IoT partner. 

After the filled storage module is transported to the carbon end-users, BACE monitors the carbon concentration and discharge of CO2 into the greenhouse. That way, there will always be insight into the CO2 levels and how these impact the conditions of the greenhouse. Finally, BACE also informs when Value Maritime’s carbon storage module is ready to be refilled onboard. 

In short, our IoT connector: BACE ensures data continuity without gaps and alerts in case a CCUS system is not working as expected. The data provided allows companies (such as Value Maritime) to keep real-time, reliable, and accurate records to:

1) verify functional requirements,

2) make informed decisions, and

3) carry out future environmental reporting. 

We would be happy to talk to you 

To know more about what IoT can do for you contact our experts at info@evalan.com so that you can start addressing your carbon-neutral goals today.

Or book a meeting here.

Share this article

Our success cases

Ministry of Defense – The ARMOR Heat Monitor

Evodos – IoT remote monitoring solution

Download: Automate Energy Monitoring

Shifter – Smart time registration system

More Blogs

Industry

NACO partners with IoT provider Evalan to enhance RCR-Tool®

GovernmentHealthcare

ARMOR Heat Stress Monitoring Sets delivered to the Royal Netherlands Army

Evalan’s CEO delivers the first of 175 Sets of ARMOR Heat Stress Monitors to Brigadier General Roland de Jong of the Royal Netherlands Army at the Bernhardkazerne in Amersfoort.
Energy & WaterIndustry

Dynamic Load Balancing for Optimization and Peak Shaving

Exceeding contract limits used to result in an automatic increase of the agreed peak power. In the age of grid congestion it can lead to contract termination and law suits.
Energy & WaterIndustry

Announcing BACE Panel for Rapid Deployment of Assets in an IoT Platform

BACE Panel has been updated with new tools such as a library of Modbus Templates. You can also store your own Templates, to make onboarding your own assets even faster.
Energy & WaterIndustry

Breaking Down your Energy Consumption with Sub-Metering

Sub-metering delivers essential information that is needed to meet ESG objectives and comply with new regulations, such as the CSRD.
Energy & WaterIndustry

IT and OT – Focus on Bridging the Gap

BACE was developed to bridge the gap between IT and OT. What does that mean and why is this relevant for you?

"We solve problems with IoT solutions to give your business a competitive advantage."